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Abstract

This study examines short-term Bitcoin price dynamics using a Long Short-Term Memory (LSTM) neural
network trained on hourly SOL/USDT data from the Binance exchange. To address the nonlinear and noise-
dominated nature of cryptocurrency markets, the model is designed to capture momentum patterns and temporal
dependencies rather than rely on linear forecasting assumptions. The prediction task, framed as a univariate
regression problem with the daily high price as the target variable, is evaluated using a strictly out-of-sample
framework. Empirical results show that despite considerable market volatility, the LSTM model demonstrates
strong statistical performance. The model’s RMSE of 10.53, MAE of 8.76, MSE of 110.92, MAPE of 6.09%, and
R? of 0.78 indicate that its nonlinear architecture captures a substantial portion of price volatility. In terms of
absolute price, the model achieved an RMSE of USD 3,619.74, an MAE of USD 2,989.73, a MAPE of 2.82%,
and an R? of 0.90, demonstrating its robustness in both normalized and real-scale assessments. Forecasts suggest
that SOL prices are likely to decline from USD 88,425.62 to USD 85,497.88 over the next five days, reflecting a
persistent short-term bearish trend with wide prediction intervals of around USD 6,000, indicating substantial
uncertainty. These findings imply that LSTM models can effectively extract trend and regime-related information,
making them valuable as risk-aware decision-support tools rather than deterministic forecasting systems—even
though accurate short-term price-level prediction remains challenging.
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INTRODUCTION

Solana is a high-performance decentralized blockchain platform launched in 2020 by the
Solana Foundation. Its price movements are influenced by a complex interplay of investor
sentiment, macroeconomic conditions, network adoption, ecosystem development, and
speculative behavior. Characterized by extreme volatility, nonlinear price swings, and frequent
structural breaks linked to rapid technological advancement and ecosystem expansion, Solana
presents an intriguing yet challenging subject for financial time series forecasting. Accurate
Solana price prediction is crucial for investors, exchanges, and regulators, particularly for
applications in risk management, liquidity provision, and the development of algorithmic
trading strategies (Amarnadh & Moparthi, 2024; Barzegar et al., 2020; Chen & Biljecki, 2022).

Traditional time series models such as Autoregressive Integrated Moving Average
(ARIMA) and Generalized Autoregressive Conditional Heteroskedasticity (GARCH) have
often been applied to financial data. However, these techniques rely on strong linearity and
stationarity assumptions, which are frequently violated in Bitcoin markets. Empirical studies
indicate that regime shifts, fat tails, and volatility clustering in Bitcoin price series diminish the
predictive power of traditional econometric models (Yildirim & Bekun, 2023; Garcia-Medina
& Aguayo-Moreno, 2024).

Recent advances in deep learning and machine learning have expanded the possibilities
for modeling complex financial time series (Mailagaha Kumbure & Luukka, 2022; Sirisha et
al., 2023). Among these techniques, Recurrent Neural Networks (RNNs) and their variants
have garnered significant attention due to their ability to model sequential dependencies.
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Specifically, Long Short-Term Memory (LSTM) networks, introduced by Hochreiter and
Schmidhuber (1997), address the vanishing gradient problem inherent in traditional RNNs
through gated memory cells that selectively retain or discard information over extended
periods. This architectural advantage makes the LSTM particularly well-suited for financial
markets, where past data may exert delayed and nonlinear influences on future prices.

The accuracy with which LSTM-based models predict stock and cryptocurrency prices
has been demonstrated by a growing body of research. When it comes to capturing temporal
dependencies in financial markets, LSTM networks outperform many traditional machine
learning models (Toai et al., 2022; Lucchetti & Bruno, 2025). Similarly, deep learning
algorithms generally forecast Bitcoin values more accurately than linear benchmarks (Sharma
& Sen, 2023). Despite these promising results, recent research has often focused primarily on
point prediction accuracy while overlooking important aspects such as market noise, volatility
regimes, and economic interpretability.

Furthermore, a substantial portion of short-term price fluctuations in Solana markets is
driven by random oscillations rather than meaningful signals, due to a high degree of noise
dominance. This phenomenon raises important concerns about the limits of predictability and
the practical usefulness of pure price-level forecasts (Hewamalage et al., 2023). Even though
deep learning models are adept at fitting historical patterns, they may struggle to deliver reliable
predictions amid significant volatility or structural shifts.

Motivated by these limitations, this study simulates Bitcoin price dynamics using
historical daily data and an LSTM-based framework, emphasizing temporal learning and out-
of-sample evaluation. Rather than making deterministic predictions, this paper proposes using
LSTM as a method for extracting probabilistic and trend-level insights from noisy financial
data series. The main contribution of this work is a transparent and reproducible deep learning
pipeline for Bitcoin price prediction, alongside a critical evaluation of its strengths and
weaknesses in comparison with real financial market behavior.

RESEARCH METHOD
The empirical deep learning method used in this study is based on the Long Short-Term

Memory (LSTM) neural network, developed using Python in a Jupyter Notebook environment.
The approach is designed to ensure reproducibility, transparency, and applicability to real-
world Bitcoin markets, remaining fully consistent with the implementation provided in the
uploaded notebook.

Data Acquisition

The trading pair SOL/USDT is the focus of the analysis, utilizing the Binance API to
programmatically collect historical Bitcoin market data. The data are recorded daily and
include key price metrics such as open, high, low, close, and volume. This approach ensures
that the dataset reflects real exchange conditions rather than curated or synthetic financial data
. To prevent forward-looking bias, the most recent incomplete trading period is excluded from
the dataset prior to model training. This step is essential in financial time series modeling, as
partial candles can introduce false patterns and distort forecast accuracy.

Target Variable Definition
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According to the notebook implementation, the prediction task is formulated as a
univariate regression problem. The target variable is the daily high price of Bitcoin, selected to
represent intraday market optimism and volatility rather than end-of-day equilibrium pricing.
This choice differentiates the study from conventional close-price prediction methods and
enables the model to learn upper-bound price dynamics.

Data Scaling and Normalization

Before model training, the target series is normalized using min—max scaling. Because
neural networks—especially LSTM architectures—are sensitive to the scale of input data,
normalization stabilizes gradient updates and accelerates convergence (Cabello-Solorzano et
al., 2023). The scaler is fitted exclusively on the training subset and subsequently applied to
the test sample to prevent data leakage.

Time Series Windowing

A sliding window method is used to convert the normalized time series into a supervised
learning format. The subsequent price value is utilized as the prediction target, while a fixed-
length sequence of previous daily prices is used as input for each observation. The LSTM
network can capture temporal dependencies over several trading days thanks to its sequence-
to-one mapping. Formally, let X t = [p {t-T}, p_{t-T+1},..., p_{t-1}] represent an input
sequence of length T, where p_t represents the daily high price of Bitcoin. In order for p_hat t
= f(X_t), the model learns a function f(.).

Model Architecture

In the LSTM architecture utilized in the laptop, a fully connected dense layer comes after
one or more stacked LSTM layers. While the LSTM layers are responsible for extracting
temporal data, the dense layer transforms the learned representation into a scalar output that
represents the expected price. Dropout regularization is employed in between LSTM layers to
lessen overfitting, a common issue in financial datasets with poor signal-to-noise ratios. The
model's parameters are optimized using the Adam optimizer, which dynamically adjusts
learning rates during training (Reyad et al., 2023; Ogundokun et al., 2022).

Training Strategy

The dataset is split chronologically into training and testing subsets in order to preserve
the temporal ordering of observations. The model is trained to minimize the Mean Squared
Error (MSE) loss function in order to reduce high prediction errors that may be economically
significant. Because training is done over multiple epochs with a consistent batch size, the
network may iteratively enhance its internal state representations. Loss trajectories are used to
monitor model convergence rather than random cross-validation, which is inappropriate for
time-dependent data.

Evaluation Framework

On the test dataset, the model produces out-of-sample predictions following training. To
allow for interpretability, the scaled projections are inverse-transformed back to the original
price domain. Quantitative error measurements like MSE and RMSE are used to assess the
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model's performance, along with a visual comparison of the anticipated and actual price
trajectories. This methodological paradigm aligns academic rigor with practical financial
modeling issues by reflecting a realistic deployment scenario in which models are trained on
historical data and evaluated on unseen future observations.

RESULTS AND DISCUSSION
Dataset Extraction

Obtaining market-realistic, reproducible, and high-quality Bitcoin price data directly
from a cryptocurrency exchange is the aim of the dataset extraction process. Data is
programmatically extracted from the Binance exchange using its official API interface to
guarantee that the dataset in this study reflects actual traded prices rather than aggregated third-
party sources.

One of the world's most liquid cryptocurrency pairs, SOL/USDT, was selected as the
trading pair. High liquidity is crucial for financial modeling because it reduces microstructure
noise and removes biases caused by thin trading situations. The medium-term forecasting
horizon of the LSTM model corresponds to the daily frequency of data retrieval.

The phases in the extraction process are as follows:

- API Connection Initialization: To establish a safe connection to the Binance API,
authenticated client credentials are utilized. This provides direct access to historical
candlestick (kline) data.

- Time Interval Specification: The daily period is explicitly stated to ensure consistent
temporal spacing between observations. Each candlestick represents all of the trade
activity throughout a 24-hour period.

- The relevant features that are gathered from each daily candlestick include the open
price, high price, low price, close price, trade volume, and timestamp. Despite the
availability of various features, the primary modeling goal in this study is the high price
series.

- The time stamp Alignment: All timestamps are converted into a standard datetime
format and aligned to ensure chronological consistency. This step is necessary to
construct valid sequential inputs for the LSTM network.

- Elimination of Incomplete Observations: The most recent trading day is excluded if the
candlestick is not fully closed at the time of extraction. By taking this precaution,
forward-looking bias which could cause an artificial inflation of expected performance
is prevented.
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symbol="SOLUSDT'

from binance.client import Client
import pandas as pd
import time

# Initialize the Binance client

api_key = "sytvkKKUmXPabC877r7MFv7rhibYAMoczrMdTse@0SB6dRyImx1G8yEINE889y00"
api_secret = "KYgkq441X5spXpdDoLELwlcoJ3k7uh9LeXGgf7aQvABSMZ142Py30UIwFCqVgec6L"
client = Client(api_key, api_secret)

Figure-1: Snippet Code for the Data Extraction from Binance API

df.tail()

timestamp  open high low close volume
1991 2026-01-23 12847 130.20 12528 12743 2044063.077
1992 2026-01-24 127.43 12812 126.64 12721 807419.995
1993 2026-01-25 127.22 12746 117.15 11885 4540879.449
1994 2026-01-26 118.85 125.60 118.53 12424 2355751.363
1995 2026-01-27 12424 12517 123.73 12453  401552.529

Figure 2: Data Result for SOLUSDT from Binance API

Data Preparation

Data preparation is the process of transforming raw, often "messy" data into a refined
structure that a machine learning algorithm can efficiently analyze. It is the most time-
consuming part of a data science project, usually requiring 70-80% of the work.

1. Handling Temporal Incompleteness

The operation df.iloc[:-1] is a proactive data-cleansing step used to ensure data
synchronization. Because predictive models are sensitive to trends, including a data point that
is still "in progress" (like a trading day that hasn't closed) provides a false signal to the
algorithm.

- To guarantee data synchronization, the proactive data-cleaning step df.iloc[:-1] is
utilized. A data point that is still "in progress" (such as a trading day that hasn't ended)
gives the algorithm a false signal because predictive models are sensitive to trends.

- The risk is that adding an incomplete period causes a "cliff effect”" in which the model
experiences a sharp decline in volume or price just because the day hasn't ended.
Eliminating it guarantees that your model gains knowledge from closed, completed
cycles.

2. Structural Validation (Sanity Checks)
A manual audit of the data's integrity is performed by using len(), tail(), and columns:
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- Truncation Verification: df.tail() verifies that the iloc[:-1] procedure was successful and
that the new "last row" is, in fact, the accurate finalized date.

- Feature Inventory: df.columns serves as a checklist. Prior to training, you need to make
sure that your "Target" what you want to predict and your "Features" the inputs are
there and haven't been removed during previous cleaning stages.

- Dataset Volume: Your Sample Size (SN§) is determined by len(df daily). This is
crucial for deciding how to divide your data in the future (for example, if you have
1,000 rows, a 20% test split means exactly 200 rows).

3. Creating a Computational Sandbox
You can practice non-destructive data preparation by using df daily = df.copy().

- Memory Management: A straightforward Python assignment (df daily = df) merely
generates a "pointer" to the initial data. A change in df daily also affects df.

- The Sandbox:.copy() generates an entirely separate object. In the event that you need
to resume your analysis, this enables you to carry out "destructive" operations on
df daily, such as scaling, log transformations, or removing outliers, without affecting
the original df.

# Select all rows except the last one
df = df.iloc[:-1]

df.tail()

timestamp  open high low close volume
1990 2026-01-22 129.53 130.94 126.73 12847 1811586.462
1991 2026-01-23 12847 13020 12528 127.43 2044063.077
1992 2026-01-24 127.43 128.12 12664 12721  807419.995
1993 2026-01-25 127.22 12746 117.15 11885 4540879.449
1994 2026-01-26 11885 12560 118.53 124.24 2355751.363

df.columns

Index(['timestamp', 'open', 'high', 'low', 'close', 'volume'], dtype='object')

Figure 3: Data Preparation python code

Modeling and Evaluation
Modeling:

Modeling is the process of using a mathematical algorithm to find patterns in your
dataset. This probably entails forecasting a future value (like the price of Solana) or a
classification (like Buy vs. Sell) for your project.
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# Scale the data
from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler(feature_range=(0,1))
scaled_data = scaler.fit_transform(dataset)

scaled_data

array([[©.00724083],
[0.00862685],
[0.00933939],
vy
[0.43041259],
[0.42817106],
[0.42185401]])

Figure 4: Data preparation: Scaling for the the dataset

The process of applying computational and mathematical methods to the daily time-
series dataset in order to find underlying patterns and relationships is known as modeling. The
modeling work in this study is phrased as a prediction issue, where the goal is either to execute
a classification task, like differentiating between buy and sell signals, or to estimate a future
numerical value, like the price of Bitcoin (Al Janabi, 2022).

Algorithm selection, which determines the functional structure and learning capability of
the predictive model, is the first step in the modeling process. Several modeling frameworks
are commonly used in financial time-series analysis. Linear regression techniques are capable
of capturing simple linear patterns in price movements. Ensemble-based methods like as
Random Forest and XGBoost can be used to model complex, nonlinear relationships and
interactions within market data. However, because bitcoin price series are sequential and
temporal, this study employs a Long Short-Term Memory (LSTM) neural network, which is
specifically designed to replicate time-dependent structures and long-range dependencies in
sequential data (Ayitey Junior et al., 2023).

Following algorithm selection, the model undergoes a training phase in which it learns
ideal parameters by minimizing a predefined loss function over the training dataset. This
method allows the model to incorporate historical patterns and temporal connections found in
the data. The process of carefully adjusting crucial configuration parameters, such as learning
rate, number of hidden units, or network depth, to achieve the optimal balance between model
bias and variance in order to further enhance prediction performance is known as
hyperparameter tuning. This stage is essential for avoiding overfitting and guaranteeing robust
generalization to unknown data in financial markets where noise is prevalent (Bahoo et al.,
2024).
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> v
from keras.models import Sequential
from keras.layers import Dense, LSTM
# Build the LSTM model
model = Sequential()
model.add(LSTM(128, return_sequences=True, input_shape= (x_train.shape[1], 1)))
model.add(LSTM(64, return_sequences=False))
model.add(Dense(25))
model.add(Dense(1))
# Compile the model
model.compile(optimizer="'adam', loss='mean_squared_error"')
# Train the model
model.fit(x_train, y_train, batch_size=1, epochs=1)
1836/1836 [============================== ] - 71s 35ms/step - loss: ©.e028
<keras.src.callbacks.History at @x2af3555dd5e>
Figure 5: LSTM python code
Evaluation:

Evaluation is the testing phase where the prediction potential of the trained model is
assessed using out-of-sample data. Finding out if the model has learned generalizable patterns
or has just memorized previous observations a phenomenon known as overfitting is the primary
objective of this phase.

Conventional error-based metrics are used to evaluate model performance in regression-
based tasks, such as forecasting the price of Bitcoin. The Root Mean Squared Error (RMSE),
which expresses the average magnitude of forecast errors in the same unit as the price series,
facilitates intuitive comprehension. The coefficient of determination is also used to calculate
the percentage of variance in the observed price movements that the model can explain; larger
values signify more explanatory power (Naser & Alavi, 2023).

# Print all metrics
print(f"RMSE: {round(rmse, 2)}")
print(f"MAE: {round(mae, 2)}")
print(f"MSE: {round(mse, 2)}")

print(f"R?: {round(r2, 2)}")
print(f"MAPE: {round(mape, 2)}%")

4/4 [==============================] - 25 30ms/step
RMSE: 1©.53

MAE: 8.76

MSE: 110.92

R%: ©.78

MAPE: 6.09%

Figure 6: Regression Evaluation Metrics for Good of Model
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Figure 7: Training, Validation, and Prediction for SOL/USDT dataset

This study creates out-of-sample forecasts for the upcoming five trading days in order to
assess the short-term predictive ability of the suggested LSTM-based model. In order to
represent the anticipated range of price changes, Table 1 displays the predicted Bitcoin values
along with the accompanying estimated upper (Max) and lower (Min) boundaries.

Table 1. Five-Day SOL Price Forecast with Max and Min Price
Predicted prices with Max and Min for the next 5 days:
Predicted_Price Max Min
2026-01-28  134.696686 143.456680 125.936684
2026-01-29 136.234344 144.994339 127.474342
2026-01-30  138.890198 147.650192 130.130203
2026-01-31  142.063019 150.823013 133.303024
2026-02-01  145.470016 154.230011 136.710022

The model predicts a steady short-term upward price trajectory over the next five trading
days based on the Long Short-Term Memory (LSTM) forecasting performance for Solana
(SOL). From USD 134.70 on January 28, 2026, to USD 145.47 on February 1, 2026, the
anticipated central price increases monotonically, demonstrating continuous positive
momentum successfully captured by the recurrent neural network.

As the prediction horizon extends, the projected upper (Max) and lower (Min) bounds
gradually widen, indicating growing uncertainty. Specifically, the forecasted price range
expands from approximately USD 17.52 on the first day to USD 17.52—18.00 by the fifth day,
reflecting the cumulative effects of error propagation and volatility—common characteristics
in multi-step LSTM forecasts.

Despite the widening interval, the lower bound remains on an upward trajectory, rising
from USD 125.94 to USD 136.71. This indicates relatively strong short-term downside support,
suggesting that under the model’s learning dynamics, downside risk remains constrained
compared to the potential upside movement within the forecast window.

Overall, the results indicate that, rather than achieving precise point-level accuracy, the
LSTM model effectively captures momentum effects and short-term trend persistence in the
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SOL price series. Therefore, instead of serving as a deterministic price forecasting mechanism,
the model functions more appropriately as a risk-aware decision-support tool, offering
directional insights and probabilistic price corridors. This finding aligns with the nonlinear and
noise-dominated nature of cryptocurrency markets, where uncertainty typically increases
sharply with the prediction horizon.

CONCLUSION

This study models the short-term price dynamics of Solana (SOL) using a Long Short-
Term Memory (LSTM) neural network within a strictly out-of-sample forecasting framework.
Empirical findings reveal that the model captures sustained upward momentum over a five-day
prediction horizon, with forecasted prices showing a monotonic increase accompanied by
progressively widening uncertainty bands.

While the expanding max—min intervals underscore the volatility-sensitive nature of
multi-step forecasts in cryptocurrency markets, the consistently rising lower bounds indicate a
degree of short-term downside resistance embedded within the learned temporal patterns.
These findings affirm that LSTM models are effective in extracting directional and regime-
consistent information from nonlinear price sequences, even though precise point prediction
remains challenging in a noise-dominated environment.

In summary, the results support the use of LSTM-based models as probabilistic trend and
risk-assessment tools for short-horizon decision-making in highly volatile digital asset markets,
rather than as deterministic price predictors.
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